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ABSTRACT 

In continuous injection calorimeter systems the mass of the contents of the calorimeter cell 
varies. This article describes a mathematical model for microcalorimeter systems employing 
this technique. By assuming the heat capacity of the variable element to depend linearly on 
time, an analytical expression for the transfer function of the system can be obtained. As an 
example, the unit pulse response calculated for a variable mass calorimeter by numerical 
methods is compared graphically with that predicted by the model when just two time 
constants are taken into account. 

INTRODUCTION 

Recently, a number of deconvolution techniques have been developed for 
use in conduction calorimetry [l-6], mainly for their application to the study 
of liquid mixtures and solid-solid transitions [7,8]. In the case of liquid 
mixtures, particular interest is taken in systems in which a low concentration 
of one component is dissolved in another. To study these regions the minor 
component is slowly injected into the calorimeter cell, which contains a 
known quantity of the major component. This procedure causes the heat 
capacity of the contents of the calorimeter cell to vary, hence, the transfer 
function of the calorimeter system as a whole changes with time, and the 
mathematical models and deconvolution techniques hitherto developed are 
no longer applicable. 

This article presents a method for obtaining an analytical expression for 
the transfer function of a calorimeter system when one of its parameters 
varies slowly with time. The computer-simulated unit pulse response of a 
typical system is then compared with that predicted by the model. 

THE MODEL 

A “localized constants” (RC) model is adopted, in which the calorimeter 
is assumed to consist of n elements of heat capacities ci( t ) ( i = 1,. . . , n )_ The 
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heat balance in each element is given [9,10] by 

p,(t)=&jc;(t)J(t)l+ i Rjj(J,_Ji) i=l 3.**, n 
j=o 

0) 
j=i 

where pi(t) is the power dissipated in element i, J, is the temperature of 
element i, and Rij is the thermal coupling between elements i andj. Jo is the 
temperature of the thermostat, which is used as a reference point, i.e., Jo = 0. 
The Laplace transform of eqn. (1) is 

p,(s) = sh(~)Ji(d] +RJi:.(s) +JclRjj[r.(s) - q(s)] i=l Y---Y n 

j#i 

(2) 
where capital letters represent the Laplace transforms of the functions 
represented in eqn. (1) by the corresponding lower case letters, and T(S) is 
the Laplace transform of J(t). Equation (2) may be put in the form 

P,(s) =~L[c~(t)Ji(t)] + Q,q.(s) - i R&(s) i=l ,.--, n (3) 
j=o 
j#i 

where 
n 

Qi = C Rij i=l,...,n (4) 
j=o 
j#i 

In the following it is assumed that the heat capacity of only one of the 
elements of the system (i = 1) varies with time, and that this is the only 
element in which energy is dissipated. Equation (3) then becomes 

P;(s) = [SC,(S) + Qi] q - e Riiq i=2 ,...f n 
/=I 
j+i 

The solution of eqn. (6) is 

T(+;T, i=2,...,n 

where D is the determinant 

(SC, + Q,) -R2, -R,, ... 

-R23 bC,+Q,> -R,, ... 

D= -R,, -R34 (SC, + Q,> . -. 

-R2n -Rx, -R,, ... 

-R,tl 

-R%l 

--R&l 

(SC, + Q,) 

(6) 

(7) 

(8) 
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and Dj is the same determinant except for the (i = l)th column having been 
replaced by 

(9) 

D is a polynomial of degree n - 1 in s and 0, a polynomial of degree n - 2 in 
s. 

Equations (5) and (7) together imply that 

Pi(,) =s+,(t)J,(t)j + G,(s)%) (10) 

where 

G,(s) = Q, -$ $ R,.jDj 
J=2 

(11) 

If the variation of c1 with time is assumed to be linear, then 

c,(t) = at + b (12) 

and eqn. (10) becomes 

P,(S)= [GI(s)+sb]Tl -sa&T, (13) 

Assuming the sensors of the calorimeter to be located in the n th element, 
then the overall transfer function of the system is given by 

H(s)=~T,* (14) 

where T,* is the solution of eqn. (13) when Pi(s) = 1, i.e., when the 
dissipation in element 1 is a Dirac unit delta function. Unfortunately, eqn. 
(14) generally has no exact solution (see Appendix A), and approximate 
methods must be used. 

AN APPROXIMATE SOLUTION FOR H(s) 

If the heat capacity ci only changes slowly, i.e., if a in eqn. (12) is small, 
then Poincare’s method [ll] may be used to obtain an approximate solution 
of eqn. (13). It is therefore assumed that the solution of the differential 
equation is of the form 

T,* = T,, + aT,, + a2T,2 + a3T13 + . . . 05) 



Equation (13) therefore becomes 

(sb + GdT,o +aT*,+aZT,,+ . ..)-l=aF$T.,+n2s$T,,+ . . . (16) 

and the equation of equal powers of a yields 

(sb+G,)T,,-l=O 

d 
(sb + G,)T,, = s-T 

ds lo 

(sb + G,)T,,=s$T,, (17) 

which, expressed as an explicit recursion, becomes 

T1o = (sb : G,) 

T1l = (sb: G,) ds 
dT 

lo 

q2 = (sb: G,) ds 
dT 

” 

Thus T,* and, via eqn. 
desired. 

(18) 

(14), H(S) can be approximated to whatever order is 

It may be noted that T,, is the only term that appears in eqn. (15) if the 
heat capacities are all constant. The remaining Tlj have the same poles as 
Tlo, but their multiplicities increase according to the sequence 1, 3, 5, etc. 

A UNIT PULSE RESPONSE 

In order to test the method set out above, the behaviour of a calorimeter 
consisting of two elements (n = 2) under the three regimes shown in Table 1 
is examined. The time-invariant regimes A and C correspond to regime B at 
times t = 0 and t = 1000 s, respectively. The unit pulse responses correspond- 
ing to A and C are readily calculated [l], but that of B must be obtained by 
numerical methods. All three unit pulse responses are shown in Fig. lA, 
together with that predicted by the proposed model as described below. 

If only the first two terms of eqn. (15) are taken into account, then the 
transfer function of the two-element system, as calculated by the model (eqn. 
14), is 

RI2 1 R,, s(~~+2fi-~~+f~~) 

H(s)=hc, (S-p,)(S-p2)-a- 
b2C2 (s - P1)3(s - P2j3 

(19) 
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TABLE 1 

The three models examined 

Model Cl c2 RI.= R, RI, = Rx 

A 10 12 0.07 0.14 
B 10 + 0.011 12 0.07 0.14 
C 20 12 0.07 0.14 

where a and b are the coefficients appearing in eqn. (12), p, and pz are the 

poles of the solutions of 

s2+r,s+ro=o 

and the other coefficients are given by 

(20) 

(21) 

(22) 

(23 ) 

The Laplace transform of eqn. (19) gives the desired unit pulse response 

h(t) = 
R12t 1 
-p(e 
bc, ~1 - ~2 

(24 

Fig. 1. (A) The unit pulse responses corresponding to models A, B and C of Table 1. B is 
obtained using numerical methods. (B) The unit step function responses corresponding to 
models A, B and C of Table 1. 
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where the A,j are given by 

S( S2 + 2fs - t-0 + fr,) 

(s -Fi)3(S -P2J3 

(25) 

The A;, are calculated explicitly in Appendix B. The agreement between eqn. 
(24) and the numerically calculated unit pulse response is excellent. Figure 2 
shows a detail of the most critical region of h(t) in Fig. 1A together with the 
response predicted by eqn. (24). 

A UNIT STEP FUNCTION RESPONSE 

If the input to the two-element calorimeter system described above is 
pi(t) = 1 (t > 0), so that Pi(s) = l/s, then the following expression for the 
output may be derived by applying a first-order approximation to eqn. (13) 

y(+R,, 1 R,, 2s3+(rl+3f)s2+2fr,s+fr,, 

bc, s( s2 + r,s + r,,) - ab2C, s( s2 + ‘1s + rJ3 
(26) 

or in the time domain 

y(t)=2(B ,eP1’ + B2ePZ* + B,) -a 
2 

(27) 

Fig. 2. Detail of the most critical region of 
predicted by eqn. (24). 

h(t) in Fig. 1A together with the response 
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Fig. 3. Detail of the most critical region of the unit step function response of model B with 
the response predicted by eqn. (27). 

The constants B,, B,, D and C,j are obtained in a similar manner to those of 
the unit pulse response, and are shown explicitly in Appendix B. It is 
noteworthy that the model predicts that the calorimeter response as t + 00 is 
less than that of the time-invariant system. According to eqn. (27) 

(28) 

and since f, r. and b are all positive, the absolute value of the response 
diminishes as the value of a increases. 

The unit step responses calculated numerically for the three regimes of 

Table 1 are shown in Fig. 1B. Figure 3 details the steady-state responses of 
the three regimes together with that predicted by eqn. (27). 

CONCLUSION 

The unit pulse response predicted by eqn. (24) for calorimeters in which 
the heat capacity of the contents of the cell varies is in excellent agreement 
with the numerically calculated behaviour of the system, and the response to 
a unit step function predicted by eqn. (27) is likewise satisfactory. The 
localized constants model used to derive eqns. (24) and (27) therefore 
promises to prove an important methodological advance in the characteriza- 
tion of calorimeters with time parameters. 
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APPENDIX A 

The solution of eqn. (13) is 

T,*(S) = eAL/M( s)eLds 

where 

P,(s) M(s) =- 
sa 

Taking eqn. (11) into account, L(S) may be put in the form 

L(S)= -+lns+N(s) 

where 

sb-; $ RljDj 

N(s)= -j ;;’ ds 

(Al) 

W) 

(A3) 

( fw 

(A% 
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The solution is thus 

T,* = sQ,/~e-W) J eN%4(s)s-Ql’od, 646) 

This is not integrable unless - Q,/u is a whole number, which there is no 
reason to suppose is the case. 

APPENDIX B 

The parameters Aji of eqn. (24) are given by 

1 2Ki,p,* + (2K,pj + 3Kiz)pi + Ki,pj + 4Ki, 
Ai, = - z 

(Pi-Pj)’ 

i=1,2 j=1,2 j#i 

Ail= - 
2Kilpf + Kizpi + Ki3 

(PI -P*14 

i= I,2 

A. =(_1)iPi(P:+2fPi-rO+frl) 
rz 

(Pz-PII3 

i= 1,2 

where 

K, = 2f + 3pj i= I,2 

Ki2 = 2( frl - r. + 2 fp,) j = 1,2 

Ki,=pj(fr,-r,,) j#i 

Similarly, the coefficients that appear in eqn. (27) are given by 

1 
Bi = 

PitPi-Pj) 
i=1,2 j=1,2 j#i 

1 
B, = - 

PIP2 

(Bl) 

W) 

(B3) 

w 

035) 

036) 

ci, = 
pi’ + (3ki3 + 4pj)pf + (4ki2 + ki,pj)pf + 5kilPf + (6kio - k, Pj) Pi -,2Pjkio 

2PT( Pi - Pj)’ 

i=1,2 j=1,2 j#l 037) 

ci, = ( - 1) 
i 2~: + ki,p’ + kizpf + kilpi + ki, 

Pf(Pj-PiJ4 
(W 

c, =2p’+(r,+3fjpt+2fr,pi+fr, 
12 

PitPi-PjJ3 

039) 



96 

fro 
E=? 

PIP2 
@lo) 

where 

kio = -fwj k,, = k,, = 4fro ki2=6fr~+P~(r~+‘f) 

ki3 = 2( r1 + 3f + 2p,) i=1,2 j=1,2 j#i @11) 


